Senin, 28 November 2011

UJI NORMALITAS REGRESI


Uji normalitas pada model regresi digunakan untuk menguji apakah nilai residual yang dihasilkan dari regresi terdistribusi secara normal atau tidak. Model regresi yang baik adalah yang memiliki nilai residual yang terdistribusi secara normal. Beberapa metode uji normalitas yaitu dengan melihat penyebaran data pada sumber diagonal pada grafik Normal P-P Plot of regression standardized residual atau dengan uji One Sample Kolmogorov Smirnov. Berikut pembahasannya:

Contoh kasus:
Akan dilakukan analisis regresi untuk mengatahui pengaruh biaya produksi, distribusi, dan promosi terhadap tingkat penjualan. sebelumnya akan dilakukan uji normalitas pada model regresi untuk mengetahui apakah residual terdistribusi normal atau tidak. Data seperti berikut:

Tahun
Tingkat penjualan
Biaya produksi
Biaya distribusi
Biaya promosi
1996
127300000
37800000
11700000
8700000
1997
122500000
38100000
10900000
8300000
1998
146800000
42900000
11200000
9000000
1999
159200000
45200000
14800000
9600000
2000
171800000
48400000
12300000
9800000
2001
176600000
49200000
16800000
9200000
2002
193500000
48700000
19400000
12000000
2003
189300000
48300000
20500000
12700000
2004
224500000
50300000
19400000
14000000
2005
239100000
55800000
20200000
17300000
2006
257300000
56800000
18600000
18800000
2007
269200000
55900000
21800000
21500000
2008
308200000
59300000
24900000
21700000
2009
358800000
62900000
24300000
25900000
2010
362500000
60500000
22600000
27400000



1)   Metode grafik
Uji normalitas residual dengan metode grafik yaitu dengan melihat penyebaran data pada sumber diagonal pada grafik Normal P-P Plot of regression standardized residual. Sebagai dasar pengambilan keputusannya, jika titik-titik menyebar sekitar garis dan mengikuti garis diagonal maka nilai residual tersebut telah normal.
Langkah-langkah analisis pada SPSS sebagai berikut:
-       Inputkan data pada SPSS 
- Untuk analisis data, klik menu Analyze >> Regression >> Linear       
-       Pada kotak dialog Linear Regression, masukkan variabel Tingkat penjualan ke kotak Dependent, kemudian masukkan variabel Biaya produksi, Biaya distribusi, dan Biaya promosi ke kotak Independent(s).
-          Klik tombol Plots, kemudian terbuka kotak dialog Linear Regression: Plots.
-          Beri tanda centang pada ‘Normal probability plot’, kemudian klik tombol Continue. Akan kembali ke kotak dialog sebelumnya, klik tombol OK. Maka hasil grafik Normal P-P Plot seperti berikut:


Dari gambar grafik di atas dapat diketahui bahwa titik-titik menyebar sekitar garis dan mengikuti garis diagonal maka nilai residual tersebut telah normal.

2)   Metode statistik One Sample Kolmogorov Smirnov
Uji One Sample Kolomogorov Smirnov digunakan untuk mengetahui distribusi data, apakah mengikuti distribusi normal, poisson, uniform, atau exponential. Dalam hal ini untuk mengetahui apakah distribusi residual terdistribusi normal atau tidak. Residual berdistribusi normal jika nilai signifikansi lebih dari 0,05.
Langkah-langkah analisis pada SPSS sebagai berikut:
-       Inputkan data di SPSS 
-       Langkah pertama yaitu mencari nilai residual, caranya klik Analyze >> Regression >> Linear        
-       Pada kotak dialog Linear Regression, masukkan variabel Tingkat penjualan ke kotak Dependent, kemudian masukkan variabel Biaya produksi, Biaya distribusi, dan Biaya promosi ke kotak Independent(s).
- Klik tombol Save, selanjutnya akan terbuka kotak dialog ‘Linear Regression: Save’
-          Pada Residuals, beri tanda centang pada ‘Unstandardized’. Kemudian klik tombol Continue. Akan kembali ke kotak dialog sebelumnya, klik tombol OK. Hiraukan hasil output SPSS, Anda buka input data di halaman Data View, disini akan bertambah satu variabel yaitu residual (RES_1).
 - Langkah selanjutnya melakukan uji normalitas residual, caranya klik Analyze >> Non Parametric tests >> Legacy Dialogs >> 1-Sample K-S.
-       Selanjutnya akan terbuka kotak dialog ‘One Sample Kolmogorov Smirnov Test’ seperti berikut:
-       Masukkan variabel Unstandardized Residual(RES 1) ke kotak Test Variable List. Pada Test Distribution, pastikan terpilih Normal. Jika sudah klik tombol OK. Akan kembali ke kotak dialog sebelumnya. Klik OK, maka hasil output seperti berikut:


    Dari output di atas dapat diketahui bahwa nilai signifikansi (Asymp.Sig 2-tailed) sebesar 0,631. Karena signifikansi lebih dari 0,05 (0,631 > 0,05), maka nilai residual tersebut telah normal. 
 




Minggu, 27 November 2011

ONE WAY ANOVA

Uji ini digunakan untuk mengetahui ada atau tidaknya perbedaan rata-rata untuk lebih dari dua kelompok sampel yang tidak berhubungan. Jika ada perbedaan, rata-rata manakah yang lebih tinggi. Data yang digunakan biasanya berskala interval atau rasio.  
Contoh kasus:
Menggunakan contoh kasus pada uji independent sample t test ditambah satu kelompok data yaitu kelas C. Seorang mahasiswa dalam penelitiannya ingin mengetahui apakah ada perbedaan nilai ujian antara kelas A, kelas B, dan kelas C pada fakultas Psikologi suatu universitas. Penelitian dengan menggunakan sampel sebanyak 20 responden yang diambil dari kelas A, kelas B. Dalam uji ini jumlah kelompok responden yang diambil tidak harus sama, misalnya kelas A sebanyak 7 orang, kelas B sebanyak 7 orang, dan kelas C sebanyak 6. Data-data yang didapat sebagai berikut:

                     Tabel 39. Tabulasi Data (Data Fikti)
No
Nilai Ujian
Kelas
1
32
Kelas A
2
35
Kelas A
3
41
Kelas A
4
39
Kelas A
5
45
Kelas A
6
43
Kelas A
7
42
Kelas A
8
35
Kelas B
9
36
Kelas B
10
30
Kelas B
11
28
Kelas B
12
26
Kelas B
13
27
Kelas B
14
32
Kelas B
15
38
Kelas C
16
45
Kelas C
17
42
Kelas C
18
42
Kelas C
19
40
Kelas C
20
38
Kelas C

Langkah-langkah uji dengan program SPSS
Ø  Masuk program SPSS
Ø  Klik variable view pada SPSS data editor
Ø  Pada kolom Name ketik nilaiujn, dan kolom Name pada baris kedua ketik kelas.
Ø  Pada kolom Decimals, ubah nilai menjadi 0 untuk semua variabel.
Ø  Pada kolom Label, untuk kolom pada baris pertama ketik Nilai Ujian, untuk kolom pada baris kedua ketik Kelas.
Ø  Pada kolom Values, untuk kolom pada baris pertama biarkan kosong (None). Untuk kolom pada baris kedua klik pada kotak kecil, pada value ketik 1, pada Value Label ketik kelas A, lalu klik Add. Langkah selanjutnya pada Value ketik 2, pada Value Label ketik kelas B, lalu klik Add. Selanjutnya pada Value ketik 3, pada Value Label ketik kelas C, lalu klik Add. Kemudian klik OK. 
Ø  Untuk kolom-kolom lainnya boleh dihiraukan (isian default)
Ø  Buka data view pada SPSS data editor, maka didapat kolom variabel nilaiujn dan kelas.
Ø  Ketikkan data sesuai dengan variabelnya (pada variabel kelas ketik dengan angka 1, 2 dan 3 (1 menunjukkan kelas A, 2 menunjukkan kelas B, dan 3 menunjukkan kelas C)
Ø  Klik Analyze - Compare Means - One Way ANOVA
Ø  Klik variabel Nilai Ujian dan masukkan ke kotak Dependent List, kemudian klik variabel Kelas dan masukkan ke kotak Factor, kemudian klik Options, klik Descriptive dan Homogeneity of variance, lalu klik Continue.
Ø  Klik OK, maka hasil output yang didapat adalah sebagai berikut:

                                   Tabel. Hasil Uji One Way ANOVA




Keterangan: Tabel Descriptives di atas telah dirubah kedalam bentuk baris (double klik pada output Descriptives, kemudian pada menu bar klik pivot, kemudian klik Transpose Rows and Columns)
Sebelum dilakukan uji ANOVA maka dilakukan uji kesamaan varian (homogenitas) dengan Levene Test, uji ini digunakan untuk mengetahui apakah varian ketiga kelompok kelas sama. Data yang memenuhi syarat adalah jika varian sama atau subjek berasal dari kelompok yang homogen. 

Langkah-langkah uji homogenitas sebagai berikut:
1.   Menentukan Hipotesis
Ho :  Ketiga varian adalah sama (varian kelompok kelas A, B dan C sama)
Ha : Ketiga varian adalah berbeda (varian kelompok kelas A, B dan C sama)
2.   Kriteria Pengujian (berdasar probabilitas / signifikansi)
Ho diterima jika P value > 0,05
            Ho ditolak jika P value < 0,05
3.   Membandingkan probabilitas
Nilai P value (0,395 > 0,05) maka Ho diterima. (lihat output pada test of homogeneity of variance)
4.  Kesimpulan
Oleh karena nilai probabilitas (signifikansi) adalah 0,395 lebih besar dari 0,05 maka Ho diterima, jadi dapat disimpulkan bahwa ketiga varian sama (varian kelompok kelas A, B dan C sama).  Angka Levene Statistic menunjukkan semakin kecil nilainya maka semakin besar homogenitasnya. df1 = jumlah kelompok data-1 atau 3-1 = 2, sedangkan df2 = jumlah data – jumlah kelompok data atau 20-3 = 17.

Langkah-langkah uji ANOVA sebagai berikut:
1.   Menentukan Hipotesis
Ho :    Tidak ada perbedaan antara rata-rata nilai ujian kelas A, kelas B dan kelas C
Ha :    Ada perbedaan antara rata-rata nilai ujian kelas A, kelas B dan kelas C
2.   Menentukan tingkat signifikansi
            Pengujian menggunakan uji dua sisi dengan tingkat signifikansi a = 5%.
Tingkat signifikansi dalam hal ini berarti kita mengambil risiko salah dalam mengambil keputusan untuk menolak hipotesis yang benar sebanyak-banyaknya 5% (signifikansi 5% atau 0,05 adalah ukuran standar yang sering digunakan dalam penelitian)
3.   Menentukan F hitung
Dari tabel di atas didapat nilai F hitung adalah 14,029
4.      Menentukan F tabel
Dengan menggunakan tingkat keyakinan 95%, a = 5%, df 1 (jumlah variabel–1)  = 2, dan df 2 (n-3) atau 20-3  = 17, hasil diperoleh untuk F tabel sebesar 3,592 (Lihat pada lampiran) atau dapat dicari di Ms Excel dengan cara pada cell kosong ketik =finv(0.05,2,17) lalu enter.
5.      Kriteria pengujian
- Ho diterima bila F hitung £ F tabel
- Ho ditolak bila F hitung > F tabel
6.  Membandingkan F hitung dengan F tabel.
            Nilai F hitung > F tabel (14,029 > 3,592), maka Ho ditolak.
 7 Kesimpulan
Karena F hitung > F tabel (14,029 > 3,592), maka Ho ditolak, jadi dapat disimpulkan bahwa ada perbedaan antara rata-rata nilai ujian kelas A, kelas B dan kelas C. Pada tabel Descriptives terlihat rata-rata (mean) untuk kelas A adalah 39,57, untuk kelas B adalah 30,57 dan kelas C adalah 40,83, artinya bahwa rata-rata nilai ujian kelas C paling tinggi, kemudian kelas A dan kelas B.






Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Best WordPress Web Hosting